Thread Tools Display Modes
Old 09-19-2019, 01:25 PM   #1
Platinum Member
Join Date: Aug 2010
Location: Minnesota
Posts: 8,405
Default Article on battery technology using silicon

Not all new news, but kind of interesting as it allows use of existing production methods. This showed up on CNN and could be fairly old as they regurgitate a lot of stuff to fill space it appears, even if the date is current.

Gene Berdichevsky is the co-founder & CEO of Sila Nanotechnologies. Prior to co-founding Sila, Gene was the seventh employee at Tesla Motors where he served as Principal Engineer on the Roadster battery, leading the development of the world's first mass-produced, automotive lithium-ion battery system. The opinions expressed in this commentary are his own.

The electric revolution in transportation is as significant as the switch from the horse and buggy to the Model T. In the not-too-distant future -- some project as soon as 2030 -- the majority of new cars on the road will be electric.

But it has taken a while to get to this point. Electric cars actually predate the internal combustion engine, and have been around since before the US Civil War. Compared to the speed at which we've seen other technologies advance it took less than 25 years to go from the first cell phone prototype to the iPhone it can seem puzzling as to why this technology has moved at such a glacial pace. Today, owning a Tesla or another electric vehicle is stilla privilege of the elite or at least the upper middle class and we're still largely reliant on fossil fuels in cars, despite knowing for years that this is harmful to the environment and our future.
So what is holding us back? It all comes down to the battery.
It seems absurd, but the truth is the same humble carbon and metal oxide-based lithium-ion battery (commonly referred to as Basic Lithium-ion) that powered your Razr cell phone in 2004 is essentially the same thing powering every electric vehicle on the road today. Cars just use more of them.
And to add to the absurdity, the chemistry inside of that lithium-ion battery hasn't really changed since Sony introduced it commercially in 1991. Scientists and engineers have worked hard to try to make batteries more powerful, but the industry is now hitting the theoretical limits of battery chemistry. After over 20 years of those approaches making substantial progress, the last five years have delivered only 1% to 2% performance improvements every few years.
I faced this problem firsthand while working at Tesla on the first Roadster battery, and it's the reason why Gleb Yushin, Alex Jacobs and I founded Sila Nanotechnologies. Combined, we have spent 40 years researching, testing and building new battery technologies, and we have found that the best, fastest path to improve capacity and bring down costs for the scale we need today is Advanced Lithium-ion batteries.
While breakthroughs in energy storage technologies like solid state batteries, graphene supercapacitors and hydrogen fuel cells occur regularly, these technologies have underlying complications that come with them. Commonly, these are experiments that are only proven in a tightly controlled lab setting, and not in the real world, where variables such as temperature and product usage can be unpredictable (and therefore lead to unpredictable results). It often takes 10 years to bring a lab breakthrough to market, and almost all fall short along the way; the few that do get there underperform. For example, the promise of hydrogen fuel 15 years ago still has yet to come to fruition.
But even if these technologies are perfected, the reality is we need better energy storage now, and the infrastructure doesn't exist to bring these miracle technologies to consumers at scale because they're still so new and require entirely new methods of mass production. In the meantime, the infrastructure for Basic Lithium-ion factories already exists globally, and are capable of producing 285 Gigawatt hoursworth of power today. This investment is growing exponentially, with an estimated 68 battery "megafactories" slated to be built, which will add another 1.45 Terawatt hoursof capacity by 2028. Advanced Lithium-ion materials can be incorporated into these factories almost immediately, with no costly changes or delays for the manufacturers -- from their standpoint, it's a simple matter of swapping one black powder in the production line for another.
This brings us back to the core problem: How do you improve on a battery chemistry that has already hit its theoretical limits? Basic Lithium-ion batteries rely on graphite to store lithium when charged, but silicon has long been known to have significantly greater capacity for lithium storage and can be implemented in the same factories that today make Basic Lithium-ion. However, silicon hasn't been practical to implement because the particles will swell in size as the battery charges and discharges energy, ultimately breaking the battery after only a few charging cycles.
More Tech & Innovation Perspectives
Facebook's Libra cryptocurrency is a tool for empowerment. Not a threat
I'm developing AI that can read emotions. It's not as creepy as you think.
Big Tech can't be trusted. It's time for regulation

One solution to this problem, in simple terms, is to put a "case" around silicon composite particles to keep the swelling in check. Sila Nano has achieved this through eight years and 35,000 iterations of its materials, and have so far proven a 20% increase in battery capacity today. The theoretical limits of silicon mean these kinds of silicon-based materials could be capable of up to 40% improvement.
But what does this 40% improvement actually mean?
Today, electric vehicle batteries cost about $176 per kilowatt-hour, which translates to about one-third of the price of the entire car. For example, even the more affordable Chevrolet Bolt EV has a 60 kilowatt-hour battery pack, meaning more than $10,500 of the roughly $37,500 price tag is just the hard cost of the battery.
With energy density improvements, we could shrink the size and price of the battery proportionally while still achieving the same power, range and performance. Continued advancements will unlock even greater potential and help eliminate these tradeoffs entirely.
Today the typical electric vehicle has a range of just 200 miles and a 100,000 mile warranty. Imagine a world where we have a 500 mile range, and a million mile warranty. This isn't a dream about just having more convenience and features, it's about finally achieving the electrified automotive future that we've been promised one that is better for our planet. While it will still take several years before automakers can fully implement the latest advancements, leaders like BMW and Daimler are already on board, so it's just a matter of time.

booster is online now   Reply With Quote
Old 09-19-2019, 08:26 PM   #2
Platinum Member
Boxster1971's Avatar
Join Date: Mar 2012
Location: Maryland
Posts: 990

Thanks booster - good article.

Speaking of batteries - I bought a 2019 Chevy Bolt EV last year. It is the perfect car for our suburban life style. The industry is definitely going through a major change. The simplicity of owning an EV is such a pleasure. No more trips to the gas station, minimal repair cost. Only thing my Bolt needs after a year of driving is a tire rotation. All this disruption will drive some changes. The linked article I read ealier this week addresses the need to get road tax money from EV owners. I think this is already happening in some states - but this article, by a member of Congress, addresses the issue at Federal level.

We use the van for road trips.

2013 Airstream Interstate Lounge EXT on 2012 Sprinter 3500 170Ext
Formerly: 1973 Dodge B300 DIY pop-top conversion
Boxster1971 is offline   Reply With Quote
Old 09-20-2019, 05:01 AM   #3
Gold Member
Join Date: Aug 2019
Location: CA
Posts: 83

Sounds like he's trying to get someone to invest in his company...
-RV's, Firearms, and Bourbon
-Weekend warrior
-Winnie ERA 170M ("906" 3500 Sprinter, 6cyl Diesel)
BigFatGuy is offline   Reply With Quote
Old 09-20-2019, 09:37 AM   #4
Platinum Member
GeorgeRa's Avatar
Join Date: Feb 2016
Location: Portland, Oregon
Posts: 1,715

Thank you for this post. Here are more details about the company founder, the key to their success is likely their focus on just one component of lithium batteries the anode which is fully compatible with battery production with anode from graphite. A very young company at 1$B value, wow.
GeorgeRa is offline   Reply With Quote
Old 09-27-2019, 04:28 AM   #5
Bronze Member
Join Date: Jul 2018
Location: Alaska
Posts: 45

A minor quibble with the article perhaps - he writes that current batteries are the same as in the 2004 Razr phone. This overstates the case - Li chemistries used in batteries have changed quite a bit since 2004. His point that power densities, charge rates, etc. have not changed enough to really change the equation for large/quick use cases like a vehicle cheap enough to widely displace ICEs is correct though, obviously. The Si anode approach has promise, but there are other things people are working on. Who knows where this will all shake out. Thanks for posting the article.
Snowy is offline   Reply With Quote
Old 09-29-2019, 02:50 PM   #6
Bronze Member
Join Date: Jul 2019
Location: Boston MA-Manchester NH
Posts: 44

Could anyone please advise me as on newest battery technology of car? i need this updated information as confused to take purchase decision.

Jill Ellis is offline   Reply With Quote

Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off

» Featured Campgrounds

Reviews provided by

Powered by vBadvanced CMPS v3.2.3

All times are GMT. The time now is 08:48 PM.

Powered by vBulletin® Version 3.8.8 Beta 4
Copyright ©2000 - 2020, vBulletin Solutions, Inc.